Construction of Optimal Quadrature Formula for Numerical Calculation of Fourier Coefficients in Sobolev Space

نویسندگان

  • Nurali D. Boltaev
  • Abdullo R. Hayotov
  • Kholmat M. Shadimetov
چکیده

Computation of integrals of strongly oscillating functions is one of the more important problems of numerical analysis, because such integrals are encountered in applications in many branches of mathematics as well as in other science such as quantum physics, flow mechanics and electromagnetism. Main examples of strongly oscillating integrands are encountered in different transformation, for example, the Fourier transformation and Fourier-Bessel transformation. Standard methods of numerical integration frequently require more computational works and they cannot be successfully applied. The earliest formulas for numerical integration of rapidly oscillatory functions were given by Filon [3] in 1928. The Filon’s approach for Fourier integrals

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Quadrature Formulas for the Cauchy Type Singular Integral in the Sobolev Space

Abstract This paper studies the problem of construction of the optimal quadrature formula in the sense of Sard in (2) 2 ( 1,1) L − S.L.Sobolev space for approximate calculation of the Cauchy type singular integral. Using the discrete analogue of the operator 4 4 / d dx we obtain new optimal quadrature formulas. Furthermore, explicit formulas of the optimal coefficients are obtained. Finally, in...

متن کامل

Optimal Quadrature Formula in the Sense of Sard in K2(p3) Space

We construct an optimal quadrature formula in the sense of Sard in the Hilbert space K2(P3). Using Sobolev’s method we obtain new optimal quadrature formula of such type and give explicit expressions for the corresponding optimal coefficients. Furthermore, we investigate order of the convergence of the optimal formula and prove an asymptotic optimality of such a formula in the Sobolev space L 2...

متن کامل

Optimal Quadrature Formulas with Derivative in the Space

Abstract This paper studies the problem of construction of optimal quadrature formulas in the sense of Sard in the space ( ) 2 (0,1) m L . In this paper the quadrature sum consists of values of the integrand and its first derivative at nodes. The coefficients of optimal quadrature formulas are found and the norm of the optimal error functional is calculated for arbitrary natural number 1 N m ≥ ...

متن کامل

OPTIMAL QUADRATURE FORMULAS FOR FOURIER COEFFICIENTS IN W ( m , m − 1 ) 2 SPACE

This paper studies the problem of construction of optimal quadrature formulas in the sense of Sard in the W (m,m−1) 2 [0, 1] space for calculating Fourier coefficients. Using S. L. Sobolev’s method we obtain new optimal quadrature formulas of such type for N + 1 ≥ m, where N + 1 is the number of the nodes. Moreover, explicit formulas for the optimal coefficients are obtained. We investigate the...

متن کامل

On an optimal quadrature formula in Sobolev space L2(m)(0, 1)

In this paper in the space L (m) 2 (0, 1) the problem of construction of optimal quadrature formulas is considered. Here the quadrature sum consists on values of integrand at nodes and values of first derivative of integrand at the end points of integration interval. The optimal coefficients are found and norm of the error functional is calculated for arbitrary fixed N and for any m ≥ 2. It is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016